Production companies

Application guideline

Carbon Added Accounting

Make the CO₂e footprint of products and services demonstrably reliable

Table of Contents

1	Production companies	3
2	Role in the value chain	4
3	Calculation and allocation of CO_2e based on CO_2e input and CO_2e added	5
4	CO ₂ e output	9
5	Correlation checks	10
6	Insight	11
7	Management information	12

1 Production companies

This guideline describes the application of Carbon Added Accounting for production companies based on the principle:

CO_2e input + CO_2e added = CO_2e output

Production companies play an important role in the value chains of physical goods flows. In this guideline, heterogeneous mass production is taken as an example in which the CO₂e output via the recipe and packaging method is allocated to end products. This allows the producer to determine in detail which CO₂e emissions are generated, where the most benefits from emission reductions can be achieved and use this information for marketing purposes and facilitate cross-industry benchmarking.

2 Role in the value chain

Carbon Added Accounting considers, among other things, value chains, such as chains with physical goods flows, which, for example, start with agricultural or extractive processes, the products of which flow via storage and transport to a semi-manufactured producer, a producer of semi-finished products, wholesaler and retail outlets, to eventually reach the consumer. Various organisational typologies have been drawn up for each of these processes from the accountancy perspective as a tool for the administrative organisation and internal control (AO/IC) on the flows of money and goods.

Organisational typologies in a chain of physical goods flows

However, these typologies are not only applicable for differences in financial management and audits, but they are also suitable as an aid for CO₂e calculations.

3 Calculation and allocation CO_2e based on CO_2e input + CO_2e added

In a production process, the CO₂e input, including from purchased raw materials and semi-finished products (GHG protocol scope III). CO₂e added is the added energy in the production process through the consumption of fuels (GHG protocol scope I) and electricity (GHG protocol scope II). CO₂e added is created by the energy consumption for production and packaging lines and for the heating of the locations.

By means of production recipes, the CO₂e emissions are allocated to end products and via packaging methods also to packaged end products. The principle of homogeneous mass production - with one final product and possibly several packaging methods - is obviously a simplified version of this schedule. Here, at one or more production locations, input is consumed in a technical conversion process and a packaging process to obtain the output of semi-finished products and/or end products.

Determining CO₂e input

The CO_2e of purchased goods such as raw materials and packaging materials, or GHG scope III, can often not be accurately determined After all, this sometimes requires reliable data from suppliers, sometimes from suppliers, sometimes from abroad. Therefore, scope III is usually calculated based on the average emission factor per unit (e.g. taken from technical data sheets) multiplied by the purchased quantity.

Determining CO₂e added

Scope I and II can largely be accurately determined, often even with data quality category gold, on the basis of the monthly energy bills of the chain partner. These accounts are also easy to verify by accountants for accuracy, timeliness and completeness by means of correlation checks with bank payments and meter readings. The application of data quality is even more important in chain administrations. Generally each chain party can establish the consumption of scope I and II accurately and with high data quality, and the data quality of the final footprint in chain administrations will increase automatically.

Allocation of CO₂e input and CO₂e added

The CO₂e emissions of scope I, II and III - plus any (non-captured) CO₂e that is released during biological and/or chemical processes (e.g. fermentation at a beer brewery) - must then to be allocated to end products. Carbon Added Accounting uses, among other things, the mixing ratios (product recipes) to calculate CO₂e to be allocated to end products. This gives the manufacturer insight into the CO₂e generated to make specific products. Preferably the CO₂e should first be allocated to individual production batches, especially if the production batches vary in production quantity. Larger production batches are usually more efficient in terms of energy consumption per production unit. Also, different products are normally produced in separate production batches due to the specific product recipe.

Depending on available measurements, CO_2e can even be detailed to specific production phases, production machines from day to day (or even more detailed). This gives the manufacturer the operating information needed for (continuous) improvements.

Page 7 shows in a simplified way how scope I, II and III can be allocated to end product 1. Scope I and scope II are allocated on the basis of energy consumption and the respective emission factors to the number of kilograms of the total production, being product 1, 2 and 3 together, unless this can be more accurately allocated to product 1 on the basis of measurements per production batch. Scope III is allocated to the number of kilograms of the production of product 1 on the basis of the mixing ratio of the raw materials (the recipe) and the respective emission factors.

Allocation scopes to end product

CO ₂ e input									
CO ₂ e Scope III			Production batches		Total production	Raw materials	Emission factor	Product 1	
Raw materials	Product 1: quantity raw materials (kg)	Emission factor raw materials (kg CO ₂ e/kg)	CO ₂ e (kg)	Product 1	Production batches	Product 1	Total consumed (kg)	(kg CO ₂ e/kg)	
Borealis	262,680	1.425	374,319	January	2	Product 1	413,040	Scope III	1.517
Rigidex	105,477	1.425	150,305	February	3				
Admer	16,579	2.900	48,079	March	7				
Eval	16,831	2.200	37,028	April	4				
Polywhite	11,221	1.469	16,484	May	2				
Polyblack	<u>253</u>	1.469	<u>372</u>	June	10				
Total	413,041		626,586	July	2				
				August	4				
				September	3				
				October	2				
				November	8				
				December	4				
				Total	51				

(+)

CO₂e added

*) Emission factor 2.085 kg CO₂e/Nm³

Production batches Total production CO₂e Scope I **Raw materials** Emission factor Product 1 Product 1 Product 2 January 7,521 15,681 January 15 413,040 Scope I 0.032 15 21 18 February 9,921 20,685 February 2,609,920 Product 3 Total 19,500 **3,042,460** 7,874 4,220 March 16,417 March April May April 8,799 29 30 22 May 2,730 5,692 June 777 1,620 June July 303 632 July August September October 716 688 1,493 1,434 3,555 August September 20 32 33 34 24 **293** 1,705 October November 3,103 6,469 November December 6,446 13,439 December Total 46,003 95,917 Total

*) Emission factor 0.523 kg CO₂e/kWh

CO ₂ e Scope II			Production batches		Total production	Raw materials	Emission factor	Product 1
Electr.	Quantity (kWh)	CO ₂ e* (kg)	Product 1, 2 and 3	Production batches	Product 1, 2 and 3	Total consumed (kg)	(kg CO ₂ e/kg)	
January	185,987	97,271	January	15	Product 1	413,040	Scope II	0.534
February	187,488	98,056	February	15	Product 2	2,609,920		
March	237,038	123,971	March	21	Product 3	19,500		
April	211,338	110,530	April	18	Total	3,042,460		
May	293,924	153,722	May	29				
June	297,940	155,823	June	30				
July	233,873	122,316	July	22				
August	227,166	118,808	August	20				
September	310,390	162,334	September	32				
October	323,178	169,022	October	33				
November	328,683	171,901	November	34				
December	266,913	139,595	December	24				
Total	3,103,918	1,623,349	Total	293				

=)

CO₂e output

Emission factor	Product 1
(kg CO ₂ e/kg)	
Scope I	0.032
Scope II	0.534
Scope III	1.517
Total	2.082

Allocation via the recipes and packaging methods

During such CO₂e allocation, both the data quality and the GHG scope in the calculations must be traceable, so the end products do not only contain the calculated CO₂e values, but also the breakdown of these according to both data quality level (Bronze, Silver, Gold and Gold+) and GHG scope (I, II and III) which demonstrate the context of the CO₂e values (see: Carbon Added Accounting Application Guideline Data Quality).

4 CO₂e output

The outcome of the CO_2e allocation to end products provides the final emission factors per finished product in the reported period. These must be subdivided by GHG scope, where scopes I and II are the CO_2e added forms and scope III the CO_2e input.

Product Family	Scope I kg CO ₂ e/I	Scope II kg CO ₂ e/l	Scope III kg CO ₂ e/I	Total kg CO ₂ e/l
1 Lacquer paint - SB, opaque	0.06	0.15	1.77	1.97
2 Lacquer paint - SB, transparent	0.06	0.15	1.37	1.58
3 Lacquer paint - WB, primer	0.06	0.15	1.60	1.81
4 Lacquer paint - WB, finish	0.06	0.15	1.80	2.01
5 Latex/wall paint - WB, pigmented	0.06	0.15	2.20	2.40
6 Latex/wall paint - WB, unpigmented	0.06	0.15	2.07	2.28
7 Colour paste - SB, transparent	0.06	0.15	2.96	3.17
8 Colour paste - WB, finish	0.06	0.15	3.64	3.84

The emission factors must also be subdivided by data quality level (Bronze, Silver, Gold and Gold+) to ensure the data reliability of the calculated CO_2e output.

Data Quality	Total kg CO ₂ e	Bronze kg CO ₂ e	Silver kg CO ₂ e	Gold kg CO ₂ e	Gold+ kg CO ₂ e
Product A	2.118 (100.0%)	1.605 (75.8%)	0.032 (1.5%)	0.481 (22.7%)	0.000 (0.0%)
Product B	2.112 (100.0%)	1.600 (75.8%)	0.032 (1.5%)	0.480 (22.7%)	0.000 (0.0%)
Product C	2.100 (100.0%)	1.591 (75.8%)	0.032 (1.5%)	0.477 (22.7%)	0.000 (0.0%)

If the producer passes on the emission factors of the end products, including subdivision by GHG categories and data quality level, to the next chain partner, the CO_2e insight into the chain increases and the reported CO_2e values continue their context (reliability, added CO_2e).

Total emissions (kg CO₂e/l) broken down per product by GHG scope

CO₂e emissions product families (kg CO₂e/l) per scope and total

5 Correlation checks

Partly from an accountant's perspective, the data must be correct (read: the data is accurate), complete (read: all data is available) and timely (read: the data relates to the intended reporting period). Moreover, this prevents carbon leakage because CO₂e would not be calculated or allocated.

In the figure below, the (intermediate) meters of the gas, electricity and water consumption have been added to illustrate this, with which the consumption of these utilities can be determined and possibly even allocated to production locations and/or processes or even phases. Any data differences in the correlation checks must be explained and and, where necessary, supplemented by modelling, which naturally leads to data completeness and thus lower data quality.

Correlation checks between utility bills and the (intermediate) meters

6 Insight

CO₂e insight provides added value for the producer

The Carbon Added Accounting method uses product recipes to allocate CO₂e from all three GHG scopes to end products, while maintaining data quality category. This provides insight into the CO₂e emissions generated to make specific products. In the case of mass production, CO₂e can also be allocated to production batches. And depending on the available measurements, CO₂e even be detailed down to specific production stages, day-to-day production machines (or even per hour). This gives the manufacturer the detailed operating information needed for (continuous) improvements.

7 Management information

Based on the calculations for the allocation of CO₂e to end products, it is possible to prepare management information as shown below.

The above information shows, among other things, the total CO₂e emissions of the producer, the data quality, how the emissions are made up of components per GHG scope and what the average CO₂e emissions per unit of production is. Such management information, and the underlying details, can periodically provide insight into where the most CO₂e profit can be achieved and where actual emission reductions have been achieved. The producer can also use it to determine which CO₂e emissions are generated per end product and packaging unit, which can be used for mutual be used for mutual benchmarking or for marketing purposes.

Management report of CO₂e emissions per period

Production companies Application guideline Carbon Added Accounting. Make the CO₂e footprint of products and services demonstrably reliable.

Connekt/Top Sector Logistics Ezelsveldlaan 59 2611 RV Delft +31 15 251 65 65 info@topsectorlogistiek.nl www.carbonaddedaccounting.org

© Connekt December 2022

